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Multiple time points

Kirov, Liu, Tal, Wu, Davitz, Babb, Rusinek, Herbert, and 

Gonen. Human Brain Mapping 2017; 38: 4047-63.

Multiple voxels

Zhu and Barker. Methods Mol Biol 2011; 711: 203-26.

Multiple metabolites

Ion-Margineau, Kocevar, Stamile, Sima, Durand-Dubief, Huffel, and 

Sappey-Marinier. Front Neurosci. 2017; 11:398. 

Swanberg, Prinsen, Bailey, Destefano, Pitt, Fulbright, and Juchem. Proc Int Soc Magn Reson Med 2017, 2970. 

Noninvasive small-molecule metabolic profiling of tissue

CHAPTER 1: INTRODUCTION

1H MRS: POTENTIAL

Glx Gln Glu

Magnet field strength ↑ → data quality ceiling ↑

MR SCIENCE Laboratory (2021)

NMR Biomed 34(6): e4486.

MR SCIENCE Laboratory (2016)
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31H MRS: CLINICAL USE

CHAPTER 1: INTRODUCTION
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Swanberg, Landheer, Pitt, and Juchem. Frontiers in Neurology 10 (2019): 1173. 

1H MRS: CLINICAL USE

Relapsing-remitting multiple sclerosis 

normal-appearing white matter

Secondary progressive multiple sclerosis 

normal-appearing white matter

Classification of multiple sclerosis by single 1H-MRS-visible metabolites lacks diagnostically useful sensitivity and especially specificity.

CHAPTER 1: INTRODUCTION
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51H MRS: CLINICAL USE

Classification of multiple sclerosis by single 1H-MRS-visible metabolites lacks diagnostically useful sensitivity and especially specificity.

Swanberg, Landheer, Pitt  and  Juchem. Frontiers in Neurology 10 (2019): 1173.  

CHAPTER 1: INTRODUCTION
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Swanberg, Landheer, Pitt, and Juchem. Frontiers in Neurology (2019): 10. 

1H MRS: CLINICAL USE

Classification of multiple sclerosis by single 1H-MRS-visible metabolites lacks diagnostically useful sensitivity and especially specificity.

CHAPTER 1: INTRODUCTION
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1H-MRS signals represent radiofrequency field-induced changes in receive coil voltage, not metabolite concentration or proton density.

1H MRS: DATA HANDLING

y'

Net magnetization vector along z from nuclear 

spin polarization at thermal equilibrium and

precession about z at Larmor frequency

x'

z'

B0

𝜔 = −𝛾 𝐵0 + Δ𝐵
ω = Larmor frequency; γ = gyromagnetic ratio

B0 = scanner field; B = local field

𝜔

Precession about z on xy

plane detected by 

radiofrequency receive coils

y'x'

z'

B0

𝜔

z
x

y

Excitation in z and phasing in xy of 

spins by radiofrequency pulse 

application

y'x'

z'

B0

𝜔

𝛼∝ 𝛾 න
0

𝜏

𝐵1 𝑡 ⅆ𝑡

𝛼

α = net magnetization angle from z’

γ = gyromagnetic ratio

B1 = RF pulse power; τ = RF pulse duration

CHAPTER 1: INTRODUCTION
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
T2wi = T2 of water in grey matter (GM), white matter (WM), or CSF
T1wi = T1 of water in grey matter (GM), white matter (WM), or CSF
T2m = T2 of metabolite
T1m = T1 of metabolite
TE = echo time of sequence
TR = repetition time of sequence

Biological interpretation

Metabolite concentrations by tissue 
Intracellular vs. extracellular metabolite concentration

Intracellular metabolite concentrations within cell types of interest 
Biological functions of metabolite with respect to cell types of interest

…And more

Sn = metabolite basis function lineshape coefficients
ν = frequency domain value 
γ = line broadening parameter
ε = frequency shift parameter

Metabolite 

signal 

intensities
(a.u.)

Ф0,1 = zero-, first-order phase
NM = number of metabolites
Cl = Metabolite concentrations
NB = number of baseline splines
Β = baseline spline
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1H MRS: DATA HANDLING

CHAPTER 1: INTRODUCTION
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…And more
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signal 
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Ф0,1 = zero-, first-order phase
NM = number of metabolites
Cl = Metabolite concentrations
NB = number of baseline splines
Β = baseline spline

Sp
ec

tr
al

 q
ua

nt
ifi

ca
tio

n

Spectral Quantification: What are the effects of 

spectral quality and baseline on the precision and 

accuracy of relative metabolite concentrations drawn 

from 1H MRS data, and how do we minimize them? 

Chapter II

OVERVIEW
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
T2wi = T2 of water in grey matter (GM), white matter (WM), or CSF
T1wi = T1 of water in grey matter (GM), white matter (WM), or CSF
T2m = T2 of metabolite
T1m = T1 of metabolite
TE = echo time of sequence
TR = repetition time of sequence

Biological interpretation

Metabolite concentrations by tissue 
Intracellular vs. extracellular metabolite concentration

Intracellular metabolite concentrations within cell types of interest 
Biological functions of metabolite with respect to cell types of interest

…And more

Sn = metabolite basis function lineshape coefficients
ν = frequency domain value 
γ = line broadening parameter
ε = frequency shift parameter
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Absolute Quantification: Can disease-related differences in 

metabolite T2 introduce systematic errors to the derivation of absolute 

from relative metabolite concentrations, and how do we minimize them? 

Chapter III

OVERVIEW

CHAPTER 1: INTRODUCTION
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
T2wi = T2 of water in grey matter (GM), white matter (WM), or CSF
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Biological interpretation
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Intracellular vs. extracellular metabolite concentration
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…And more
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γ = line broadening parameter
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Statistical Analysis: Can single- or multivariate analysis of metabolite 

concentrations derived from optimized quantification of 1H MRS data 

alone classify disease states (case application multiple sclerosis)? 

Chapter IV

OVERVIEW

CHAPTER 1: INTRODUCTION
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
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Generalization: Can a quantification and 

statistics pipeline optimized for classification 

of multiple sclerosis via 1H MRS-derived 

metabolite concentrations be generalized to 

identification of PTSD and MDD? 

Chapter V

OVERVIEW

CHAPTER 1: INTRODUCTION
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
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Spectral Quantification: What are the effects of 

spectral quality and baseline on the precision and 

accuracy of relative metabolite concentrations drawn 

from 1H MRS data, and how do we minimize them? 

Chapter II

OVERVIEW
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Swanberg, Prinsen, Kurada, Bailey, Destefano, Pitt, Fulbright, 

and Juchem. NMR in Biomedicine (2021); 34(11).

Ф0,1 = zero-, first-order phase
NM = number of metabolites
Cl = Metabolite concentrations
NB = number of spline knots
Β = baseline spline
β = spline coefficient

Sn = metabolite basis function lineshape coefficients
NS = Number of signal points
ν = frequency domain value 
γ = line broadening parameter
ε = frequency shift parameter
m = simulated or measured basis metabolite FID

Ml = metabolite basis function:  

Ф0, Ф1, βj, Cl, Sn, γl, εl adjusted to minimize regularized least-squares error between model and data

Baseline term
Metabolite

scalings Metabolite basis shapes
Zero- and first-order 

phase correction

Glutamate basis function before fit
γ +12 Hz gen.

Glutamate basis function after fit in INSPECTOR
Ф0 -7.6 degrees · γ +12 Hz gen. +0 Hz sp. · ε +0 Hz 

gen. +0.25 Hz sp.

2nd degree polynomial baseline

Relative scaling 137 a.u.

L
C

M

Provencher, S. MRM (1993); 30.

11OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION
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CHAPTER 2: SPECTRAL QUANTIFICATION

Characterizing and optimizing the accuracy and precision of 1H MRS quantification methods is a prerequisite for standardizing them.

Swanberg, Landheer, Pitt, and Juchem. Frontiers in Neurology (2019); 1173.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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Spectral quantification method is an important but testable source of inaccuracy and imprecision in 1H MRS data.

CHAPTER 2: SPECTRAL QUANTIFICATION

3.03

Swanberg, Prinsen, and Juchem. Proc Intl Soc Mag Reson Med. (2019); 4237.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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CHAPTER 2: SPECTRAL QUANTIFICATION

Define Simulation

Define Quality Vectors

Simulated on 

demand

Optional input: 

Custom 

spectrum

Automated Protocol 

Generation and 

Data I/O

SIMULATION ONLY SIMULATION AND LCM LCM ONLY

Spectra output to 

user-defined directory 

Input: 

Directory 

of spectral 

data to fit

Input: 

INSPECTOR 

protocol 

template

Input: 

LCM 

basis 

set

Master CSV: Concentration 

estimates and errors for all fits

Batch Simulate Batch LCM*

First employment of novel GUI-accessible 

batch tool by another colleague in:
Campos, Swanberg, Gajdošík, Landheer, and Juchem. 

Submitted to Proc Intl Soc Mag Reson Med. (2022). 

LCM results output to 

user-defined directory 

Statistical analysis 

pipeline of choice

*LCM functions and outputs native to INSPECTOR

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

Tool 1: GUI-supported automated 

batch spectral simulation and 

quantification pipeline development 

and validation
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CHAPTER 2: SPECTRAL QUANTIFICATION

Spectral line width and signal-to-noise ratio alone affect spectral quantification precision but not accuracy.  

Swanberg, Prinsen, and Juchem. Proc Intl Soc Mag Reson Med. (2019); 4237.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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Data quality can interact with spectral baselines to induce additional systematic effects on spectral fit accuracy.  

CHAPTER 2: SPECTRAL QUANTIFICATION

Swanberg, Prinsen, and Juchem. Proc Intl Soc Mag Reson Med. (2019); 4237.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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Test data set provided by LCModel package

Our tool: INSPECTOR

Absolute knot interval = 0.3

Λ = 20

CHAPTER 2: SPECTRAL QUANTIFICATION

෡𝒀 𝝂𝒌 − 𝒀 𝒗𝒌
𝟐
+ 𝝀 𝑩′′ 𝝂𝒌

model data baseline smoothing

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

Swanberg, Landheer, Gajdošík, Treacy, and Juchem. Proc Intl Soc Mag Reson Med. (2020); 2856.

1H MRS spectral baseline modeling by smoothed cubic splines is common but understudied, partly due to lack of available tools.

Absolute knot interval not fixed by user (DKNTMN is not knot interval)

Λ not fixed by user (determined by spectral line width) 

Field preference: LCModel
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CHAPTER 2: SPECTRAL QUANTIFICATION
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First full-length publication showing 

results of novel spline baseline tool 

as featured by a colleague in:

Gajdošík, Landheer, Swanberg, and 

Juchem. Sci Rep (2021); 11, 2094. 

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

Tool 2: GUI-supported 

regularized cubic spline 

definition for spectral 

baseline modeling



Doctoral Dissertation Defense, 3 February 2022

sLASER1 (TE 20.1 ms;TR 2 s)

DOTCOPS-optimized crushers2

16-step phase cycling3

3 T Siemens MAGNETOM Prisma

1Landheer et al. (2020). NMR Biomed e4324
2Landheer et al. (2020). MRM 81(4). 
3Landheer et al. (2019). MRM. 83(2). 

19

Martin Gajdošík, 

Ph.D.

Karl Landheer, 

Ph.D.

Michael Treacy, 

B.A.

In collaboration with:

CHAPTER 2: SPECTRAL QUANTIFICATION

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

Swanberg, Landheer, Gajdošík, Treacy, and Juchem. Proc Intl Soc Mag Reson Med. (2020); 2856.
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Gaussian noise

(10 fixed patterns)

Metabolite-nulled acquisition

(aligned + scrubbed)
Modeled baseline error w.r.t. 

metabolite-nulled acquisition

Simulated metabolites

+ =

Modeled metabolite 

concentration error w.r.t. 

simulated gold standard

+

Macromolecule prediction error Metabolite quantification error

20

CHAPTER 2: SPECTRAL QUANTIFICATION

Swanberg, Landheer, Gajdošík, Treacy, and Juchem. Proc Intl Soc Mag Reson Med. (2020); 2856.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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CHAPTER 2: SPECTRAL QUANTIFICATION

Fit residual is not a reliable proxy for metabolite quantification accuracy. 

Swanberg, Landheer, Gajdošík, Treacy, and Juchem. Proc Intl Soc Mag Reson Med. (2020); 2856.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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CHAPTER 2: SPECTRAL QUANTIFICATION

22

Swanberg, Landheer, Gajdošík, Treacy, and Juchem. Proc Intl Soc Mag Reson Med. (2020); 2856.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

Fit residual is not a reliable proxy for metabolite quantification accuracy. 
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In the absence of a gold standard, the Cramér-Rao Lower Bound can help to approximate in vivo fit errors. 

CHAPTER 2: SPECTRAL QUANTIFICATION

Swanberg, Prinsen, and Juchem. Proc Intl Soc Mag Reson Med. (2019); 4237.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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But this relationship between Cramér-Rao Lower Bound and fit error depends on inclusion of baseline terms.

CHAPTER 2: SPECTRAL QUANTIFICATION

Swanberg, Prinsen, and Juchem. Proc Intl Soc Mag Reson Med. (2019); 4237. Ratiney et al. MAGMA 16 (2004); 284.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION
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Metab1

(IP + GP)

Metab2

(IP + GP)

Metab1

(IP)

Metab2

(IP)

GP

BL

(IP)

BL

(IP)

D (example columns for spline baseline amplitudes; real part shown) P (incorporating baseline terms) 

Model P.D. w.r.t. degree 0 

baseline component amplitude

2.4-2.6 ppm

Model P.D. w.r.t. degree 1 

baseline component amplitude

2.6-2.8 ppm

Model P.D. w.r.t. degree 2 

baseline component amplitude

Model P.D. w.r.t. degree 3 

baseline component amplitude

Model P.D. w.r.t. degree 0 

baseline component amplitude

Model P.D. w.r.t. degree 1 

baseline component amplitude
Model P.D. w.r.t. degree 2 

baseline component amplitude

Model P.D. w.r.t. degree 3 

baseline component amplitude

25OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION

Baseline terms can be included in Cramér-Rao Lower Bound calculations as scaled polynomial shapes.

σ S.D. of noise amplitude

D Partial derivative of model w.r.t. each parameter

P Prior knowledge matrix 
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CHAPTER 2: SPECTRAL QUANTIFICATION

Baseline terms can be included in Cramér-Rao Lower Bound calculations as scaled polynomial shapes.

Tool 3: GUI-supported 

polynomial and cubic 

spline baseline error 

definitions by geometry-

based calculation of 

Cramer-Rao Lower 

bound
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Swanberg, Gajdošík, Landheer, and Juchem. Proc Intl Soc Mag Reson Med. (2021); 2010.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION
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Swanberg, Gajdošík, Landheer, and Juchem. Proc Intl Soc Mag Reson Med. (2021); 2010.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION

Inclusion of baseline terms in Cramér-Rao Lower Bound calculations as scaled polynomial shapes provides estimates of baseline fit error.

Cubic polynomial baselines Cubic spline baselines (2.35-2.61 ppm shown)

Shapiro-Wilk test indicates that fit error distribution significantly differs from normality
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Swanberg, Gajdošík, Landheer, and Juchem. Proc Intl Soc Mag Reson Med. (2021); 2010.

OPTIMIZING 1H MRS: SPECTRAL QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION

Inclusion of baseline terms in Cramér-Rao Lower Bound calculations as scaled polynomial shapes improves CRLB estimates of metabolite fit error.

Shapiro-Wilk test indicates that fit error distribution significantly differs from normality
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The Big 

Picture:

1H MRS is a 

potential but 

currently 

untapped source 

of clinical 

diagnostic 

biomarkers.

Absolute 

Quantification:

Can disease-related 

differences in 

metabolite T2 

introduce 

systematic errors 

to the derivation of 

absolute from 

relative metabolite 

concentrations, and 

how do we minimize 

them? 

Statistical 

Analysis:

Can single- or 

multivariate analysis 

of metabolite 

concentrations 

derived from 

optimized 

quantification of 1H 

MRS data alone 

classify disease 

states (case 

application multiple 

sclerosis)? 

Spectral 

Quantification:

Data quality (FWHM and SNR) 

interacts with spectral 

baselines to affect 

metabolite fit accuracy. 

Fit residual can be 

misleading when deciding 

whether a spectral baseline 

model supports accurate 

metabolite estimates. 

Incorporating baseline 

terms to the Fisher 

information matrix improves 

utility of CRLB as a proxy for 

metabolite fit precision.

Generalization:

Can a quantification 

and statistics 

pipeline optimized 

for classification of 

multiple sclerosis 

via 1H MRS-derived 

metabolite 

concentrations be 

generalized to 

identification of 

PTSD and MDD? 
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
T2wi = T2 of water in grey matter (GM), white matter (WM), or CSF
T1wi = T1 of water in grey matter (GM), white matter (WM), or CSF
T2m = T2 of metabolite
T1m = T1 of metabolite
TE = echo time of sequence
TR = repetition time of sequence

Biological interpretation

Metabolite concentrations by tissue 
Intracellular vs. extracellular metabolite concentration

Intracellular metabolite concentrations within cell types of interest 
Biological functions of metabolite with respect to cell types of interest

…And more

Sn = metabolite basis function lineshape coefficients
ν = frequency domain value 
γ = line broadening parameter
ε = frequency shift parameter

Metabolite 

signal 

intensities
(a.u.)

Ф0,1 = zero-, first-order phase
NM = number of metabolites
Cl = Metabolite concentrations
NB = number of baseline splines
Β = baseline spline
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Absolute Quantification: Can disease-related differences in 

metabolite T2 introduce systematic errors to the derivation of absolute 

from relative metabolite concentrations, and how do we minimize them? 

Chapter III

OVERVIEW
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Sw water signal scaling coefficient

2 number of  protons in water molecule

Nh number of  protons per molecule of  metabolite to be quantified

Mw molarity of  pure water

βi molarity of  water as a fraction of  pure water in either grey matter (GM), white matter (WM), or CSF

Fi voxel fraction occupied by grey matter (GM), white matter (WM), or CSF

Accounting for proton number and estimating water molarity in voxel

T2wi T2 of  water in grey matter (GM), white matter (WM), or CSF

T1wi T1 of  water in grey matter (GM), white matter (WM), or CSF

T2m T2 of  metabolite

T1m T1 of  metabolite

TE echo time of  sequence

TR repetition time of  sequence

Accounting for relaxation differences between water and metabolite

Final result
fc conversion factor from spectral quantification scaling coefficient to absolute concentration

OPTIMIZING 1H MRS: ABSOLUTE QUANTIFICATION
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A review has shown that water T2 relaxation may change with multiple sclerosis disease state. 

dirty-

appearing 

white 

matter

non-

enhancing 

lesions

contrast-

enhancing 

lesions

T1-

hypointense 

lesions

MS → increases in water T2 for:

white-

matter 

lesions

MS → decreases in metabolite T2 for:

normal-

appearing 

white 

matter

normal-

appearing 

white 

matter

normal-

appearing 

grey 

matter
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Swanberg, Landheer, Pitt, and Juchem. Frontiers in Neurology 10 (2019): 1173. 

OPTIMIZING 1H MRS: ABSOLUTE QUANTIFICATION
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Monoexponential

Biexponential with fixed coefficients

Water-unsuppressed STEAM
TR 15 s; TE 10-250 ms

We first assessed voxel water T2 using monoexponential modeling.

35
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Swanberg, Prinsen, Kurada, Destefano, Bailey, Pitt, Fulbright, and Juchem. Proc. Intl. Soc. Mag. Reson. Med. (2018); 0161.
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Mann-Whitney test *p < 0.05

Monoexponentially modeled water T2 was higher in the aged progressive MS group than the other two groups. 
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Swanberg, Prinsen, Kurada, Destefano, Bailey, Pitt, Fulbright, and Juchem. Proc. Intl. Soc. Mag. Reson. Med. (2018); 0161.
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Water-unsuppressed STEAM
TR 15 s; TE 10-250 ms

We then assessed voxel water T2 using biexponential modeling.

Monoexponential

Biexponential with fixed coefficients
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Swanberg, Prinsen, Kurada, Destefano, Bailey, Pitt, Fulbright, and Juchem. Proc. Intl. Soc. Mag. Reson. Med. (2018); 0161.
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Skull-stripping (FMRIB Brain Extraction Tool; BET) + 

segmentation (BrainSuite)

Mann-Whitney test v. HC *p < 0.05, **p < 0.01

We controlled T2 fits for voxel composition differences in relapsing-remitting, progressive, and no MS. 

Smith SM. Human Brain Mapping 2002; 17(3): 143-155
Shattuck D, Leahy RM. Medical Image Analysis 2002; 6(2): 129-142
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In collaboration 

with Abhinav 

Kurada, B.Sc. 

Swanberg, Prinsen, Kurada, Destefano, Bailey, Pitt, Fulbright, and Juchem. Proc. Intl. Soc. Mag. Reson. Med. (2018); 0161.
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Biexponentially modeled water T2 controlled for voxel composition displayed no between-group differences. 
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Swanberg, Prinsen, Kurada, Destefano, Bailey, Pitt, Fulbright, and Juchem. Proc. Intl. Soc. Mag. Reson. Med. (2018); 0161.
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The Big 

Picture:

1H MRS is a 

potential but 

currently 

untapped source 

of clinical 

diagnostic 

biomarkers.

Absolute 

Quantification:

WaterT2 was shown 

to differ between 

individuals with and 

without progressive 

multiple sclerosis, 

emphasizing the 

utility of group-

specific corrections 

for this variable when 

employed in cross-

sectional 1H MRS 

studies of disease.

Statistical 

Analysis:

Can single- or 

multivariate analysis 

of metabolite 

concentrations 

derived from 

optimized 

quantification of 1H 

MRS data alone 

classify disease 

states (case 

application multiple 

sclerosis)? 

Generalization:

Can a quantification 

and statistics 

pipeline optimized 

for classification of 

multiple sclerosis 

via 1H MRS-derived 

metabolite 

concentrations be 

generalized to 

identification of 

PTSD and MDD? 

OVERVIEW

Spectral 

Quantification:

Data quality (FWHM and SNR) 

interacts with spectral 

baselines to affect 

metabolite fit accuracy. 

Fit residual can be 

misleading when deciding 

whether a spectral baseline 

model supports accurate 

metabolite estimates. 

Incorporating baseline 

terms to the Fisher 

information matrix improves 

utility of CRLB as a proxy for 

metabolite fit precision.

Back to the 

Big Picture:

General 

conclusions and 

outlook
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Sw = water signal scaling coefficient
2 = number of protons in water molecule
Nh = number of protons per molecule of metabolite to be quantified
Mw = molarity of pure water
βi = molarity of water as a fraction of pure water in either grey matter (GM), white matter (WM), or CSF
Fi = voxel fraction occupied by grey matter (GM), white matter (WM), or CSF
T2wi = T2 of water in grey matter (GM), white matter (WM), or CSF
T1wi = T1 of water in grey matter (GM), white matter (WM), or CSF
T2m = T2 of metabolite
T1m = T1 of metabolite
TE = echo time of sequence
TR = repetition time of sequence

Biological interpretation

Metabolite concentrations by tissue 
Intracellular vs. extracellular metabolite concentration

Intracellular metabolite concentrations within cell types of interest 
Biological functions of metabolite with respect to cell types of interest

…And more

Sn = metabolite basis function lineshape coefficients
ν = frequency domain value 
γ = line broadening parameter
ε = frequency shift parameter

Metabolite 

signal 

intensities
(a.u.)

Ф0,1 = zero-, first-order phase
NM = number of metabolites
Cl = Metabolite concentrations
NB = number of baseline splines
Β = baseline spline
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Statistical Analysis: Can single- or multivariate analysis of metabolite 

concentrations derived from optimized quantification of 1H MRS data 

alone classify disease states (case application multiple sclerosis)? 

Chapter IV

OVERVIEW
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Multiple sclerosis is an autoimmune disease with multiple heterogeneous physical manifestations and diagnostic uncertainty.

CHAPTER 4: STATISTICAL ANALYSIS

Gordon-Lipkin et al. 

(2007). Neurology

69 (16).  

World MS Federation, Atlas of MS 2013

Brief et al. 

(2010).

NMR

Biomed 23. 

Relapsing-

remitting 

(RR-MS)

Secondary 

progressive 

(SP-MS)

Neurological symptoms Radiological abnormality CNS immune activity

MSTrust.org

Thompson et al., (2018). Lancet Neurol 17: 162-73. 
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*mean ± standard deviation

12 13

43 ± 15 y.*

Non-MS 

control

18 8

44 ± 13 y.

Relapsing-

remitting MS

12 9

55 ± 8 y.

Progressive 

MS

In collaboration 

with Hetty 

Prinsen, Ph.D.

Swanberg, Prinsen, Kurada, Bailey, Destefano, Pitt, Fulbright, and Juchem, NMR in Biomedicine (2021); 34(11): e4590.

OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

We used 7-Tesla 1H MRS to characterize the prefrontal cortex metabolic signatures of two multiple sclerosis phenotypes. 
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CHAPTER 3: ABSOLUTE QUANTIFICATION

CHAPTER 2: SPECTRAL QUANTIFICATION

EMPIRICALLY SUPPORTED SPECTRAL

QUANTIFICATION METHOD

EMPIRICALLY SUPPORTED ABSOLUTE

QUANTIFICATION METHOD

CHAPTER 4: STATISTICAL ANALYSIS

OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Spectral Quantification:

Data quality (FWHM and SNR) can 

interact with spectral baselines to 

induce systematic effects on 

spectral fit accuracy. Fit residual 

is a misleading proxy for spectral 

baseline model’s support of 

accurate metabolite estimates. 

Absolute Quantification:

WaterT2 was shown to differ between 

individuals with and without 

progressive multiple sclerosis, 

emphasizing the utility of group-

specific corrections for this variable 

when employed in cross-sectional 1H 

MRS studies of disease.
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Swanberg, Prinsen, Kurada, Bailey, Destefano, Pitt, Fulbright, and Juchem, NMR in Biomedicine (2021); 34(11): e4590.

OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Tukey's honest significant difference test post hoc to analysis of variance *p ≤ 0.05, **p < 0.01, †p < 0.1

Metabolite concentrations corrected for age when regression coefficient significant in control 

Boxes indicate Spearman’s ρ p < 0.05
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Swanberg, Kurada, Prinsen, and Juchem. Manuscript in review.

OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Relapsing-remitting MS

17 women, 8 men

45 ± 13 y.o.

Progressive MS

(6 primary; 13 secondary)

11 women, 8 men 

55 ± 8.3 y.o.

No MS

15 women, 9 men

43 ± 15 y.o.

Since MS could not be identified one metabolite at a time, we used supervised learning to consider all of them at once. 
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In collaboration 

with Abhinav 

Kurada, B.Sc. 

OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Swanberg, Kurada, Prinsen, and Juchem. Manuscript in review.

We applied supervised learning to non-reduced feature sets of seven metabolites to perform one of four classifications. 
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OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Swanberg, Kurada, Prinsen, and Juchem. Manuscript in review.

Models identifying progressive MS vs. control or relapsing-remitting MS outperformed those classifying only relapsing-remitting or all MS vs. control.
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OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Models identifying progressive MS vs. control or relapsing-remitting MS outperformed those classifying only relapsing-remitting or all MS vs. control.

Validation Performance

79% accuracy

84% sensitivity

74% specificity

Validation Performance

52% accuracy

63% sensitivity

42% specificity

Validation Performance

68% accuracy

58% sensitivity

79% specificity

Validation Performance

60% accuracy

71% sensitivity

50% specificity

Swanberg, Kurada, Prinsen, and Juchem. Manuscript in review.
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OPTIMIZING 1H MRS: STATISTICAL ANALYSIS

Top 3 features

Total choline (3/3)

Glutamine (2/3)

Glutathione (2/3)

Top 3 features

Myoinositol (3/3)

Glutamate (3/3)

N-acetyl aspartate (2/3)

Top 3 features

Myoinositol (2/3)

Glutamate (3/3)

GABA (2/3)

Top 3 features

Myoinositol (3/3)

Glutamate (3/3)

GABA (2/3)

Swanberg, Kurada, Prinsen, and Juchem. Manuscript in review.

Myoinositol, glutamate, and GABA were consistently important for identifying MS, while total choline, glutamine, and glutathione were consistently informative for differentiating MS phenotypes. 
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The Big 

Picture:

1H MRS is a 

potential but 

currently 

untapped source 

of clinical 

diagnostic 

biomarkers.

Absolute 

Quantification:

WaterT2 was shown 

to differ between 

individuals with and 

without progressive 

multiple sclerosis, 

emphasizing the 

utility of group-

specific corrections 

for this variable when 

employed in cross-

sectional 1H MRS 

studies of disease.

Statistical 

Analysis:

Metabolite 

concentrations 

derived from 1H MRS 

were a viable means 

of characterizing 

progressive multiple 

sclerosis disease 

status relative to 

either relapsing-

remitting or control. 

Generalization:

Can a quantification 

and statistics 

pipeline optimized 

for classification of 

multiple sclerosis 

via 1H MRS-derived 

metabolite 

concentrations be 

generalized to 

identification of 

PTSD and MDD? 

OVERVIEW

Spectral 

Quantification:

Data quality (FWHM and SNR) 

interacts with spectral 

baselines to affect 

metabolite fit accuracy. 

Fit residual can be 

misleading when deciding 

whether a spectral baseline 

model supports accurate 

metabolite estimates. 

Incorporating baseline 

terms to the Fisher 

information matrix improves 

utility of CRLB as a proxy for 

metabolite fit precision.

Back to the 

Big Picture:

General 

conclusions and 

outlook
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For at least one month (F)

Functional impairment (G)

Not from drugs or other illness (H)

Intrusion (B)

Avoidance (C)

Negative cognition/mood (D)

Altered arousal/reactivity (E)

Yehuda et al. Nat Rev 1: 1. (2015).

Exposure to trauma (A)

Only 0.1%-19% conditional risk to 

develop PTSD depending on trauma*

* Kessler et al. Eur J Psychotraumatol 8(S5): 1353383. (2017)
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[1]  Duncan et al. Curr Psychiatry Rep 20:115 (2018). [2] Brivio et al. Genes Brain Behav 19: e12643. (2020). [3] Malikowska-Racia et al. 
Pharmacol Res 142: 30-49. (2019). [4] Pitman et al. Nat Rev 13: 769. (2012). [5] Yehuda et al. Nat Rev 1: 1. (2015).

Figure created with 
Biorender

Swanberg, Campos, Abdallah, and Juchem. Manuscript in preparation. 
Yehuda et al. Nat Rev 1: 1. (2015).
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PTSD has been associated with a broad range of measurable signatures across the body. 
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Swanberg, Campos, Abdallah, and Juchem. Manuscript in preparation. 
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So far the 1H-MRS-visible manifestation of PTSD appears unremarkable at first glance.
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Swanberg, Campos, Abdallah and Juchem. Manuscript in preparation. 
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FOV x20 y22 z7.8 cm

Matrix    x256 y256 z39 

Resolution x0.78 y0.86 z2 mm

TINV 1 s

Voxel Placement: IR-prepared T1w MRI

PTSD- MDD- 5 F, 13 M; 34 ± 8 y.o.

PTSD- MDD+          2 F, 7 M; 35 ± 15 y.o. 

PTSD+ MDD- 2 F, 3 M; 37 ± 16 y.o.

PTSD+ MDD+         1 F, 5 M; 39 ± 8 y.o. 

STEAM (8 cm3) JDE-GABA; JDE-GSH (27 cm3)

Scan Participants 

1H MRS Acquisitions 

55

Chadi Abdallah, 

M.D.

Hetty Prinsen, 

Ph.D.

In collaboration with:

Lynette Averill, 

Ph.D.

Christopher Averill, 

B.Sc.

OPTIMIZING 1H MRS: GENERALIZATION

TR 3s

TE 6 ms

TACQ 5 min

Swanberg, Prinsen, Averill C, Campos, Kurada, Krystal, Petrakis, Averill LA, Abdallah, and Juchem. Submitted to  Proc Intl Soc Mag Reson Med. (2022).
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Manually zero-order phase-corrected and frequency shift-calibrated

JDE edit-off and –on aligned with cut, ZF, zero-order phase, frequency shift (x), offset (y) 

No ZF; 4096-pt spectra cut to 1024, 2048, or 4096 pts 

Cubic spline fit baseline 

Referenced to total creatine in T1 , T2 -uncorrected fashion 

In collaboration with 

Leonardo Campos 

(B.Sc. ‘23)

OPTIMIZING 1H MRS: GENERALIZATION 56

Swanberg, Prinsen, Averill C, Campos, Kurada, Krystal, Petrakis, Averill LA, Abdallah, and Juchem. Submitted to  Proc Intl Soc Mag Reson Med. (2022).
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OPTIMIZING 1H MRS: GENERALIZATION 57

Swanberg, Prinsen, Averill C, Campos, Kurada, Krystal, Petrakis, Averill LA, Abdallah, and Juchem. Submitted to  Proc Intl Soc Mag Reson Med. (2022).
One-way ANOVA effect of fixed factor PTSD *p<0.05 †p<0.1
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OPTIMIZING 1H MRS: GENERALIZATION 58

Swanberg, Prinsen, Averill C, Campos, Kurada, Krystal, Petrakis, Averill LA, Abdallah, and Juchem. Submitted to  Proc Intl Soc Mag Reson Med. (2022).Two-way ANOVA effect of fixed factor MDD *p<0.05 **p<0.01, 

except GSH PTSD x MDD or W *p<0.05
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Swanberg, Prinsen, Averill C, Campos, Kurada, Krystal, Petrakis, Averill LA, Abdallah, and Juchem. Submitted to  Proc Intl Soc Mag Reson Med. (2022).
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The Big 

Picture:

1H MRS is a 
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currently 

untapped source 

of clinical 

diagnostic 

biomarkers.

Absolute 

Quantification:

WaterT2 was shown 

to differ between 

individuals with and 

without progressive 

multiple sclerosis, 

emphasizing the 

utility of group-

specific corrections 

for this variable when 

employed in cross-

sectional 1H MRS 

studies of disease.

Statistical 

Analysis:

Metabolite 

concentrations 

derived from 1H MRS 

were a viable means 

of characterizing 

progressive multiple 

sclerosis disease 

status relative to 

either relapsing-

remitting or control. 

Generalization:

A quantification and 

statistics pipeline 

optimized for 

classification of 

multiple sclerosis via 
1H MRS-derived 

metabolite 

concentrations can 

be generalized to 

comparably accurate 

identification of PTSD 

and MDD.

OVERVIEW

Spectral 
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Data quality (FWHM and SNR) 

interacts with spectral 

baselines to affect 

metabolite fit accuracy. 

Fit residual can be 

misleading when deciding 

whether a spectral baseline 

model supports accurate 

metabolite estimates. 

Incorporating baseline 

terms to the Fisher 

information matrix improves 

utility of CRLB as a proxy for 

metabolite fit precision.

Back to the 
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General 
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outlook
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The relative effects of confounds like spectral quality and spectral baseline model on metabolite concentration estimates can be explicitly quantified 

using simulated ground truth standards. The variance of these effects can be indirectly estimated using Cramer-Rao Lower Bound calculation 

considering baseline shapes. These results can be used to inform decision-making about how to process 1H MRS data lacking a known ground truth.

1H MRS processing pipelines involve many opportunities for confound by poorly defined or incorrect assumptions.

Current understanding of both MS and PTSD implicates multiple 1H-MR-visible metabolites, but no single metabolite finding in the brain currently 

supports sensitive or specific identification of either condition. 

When processed and quantified according to evidence from simulated validation of spectral quantification method and explicit measurement 

of reference T2 behavior, as well as considered together by multivariate supervised classification model-building, 1H-MRS metabolites 

measured in prefrontal cortex support independent classification of multiple brain disorders at sensitivity and specificity near 80%. 

Despite its limitations, 1H MRS data can still support identification of clinically relevant biological phenotypes and therefore potential utility as an 

auxiliary or mainstay of clinical diagnostics for neurological or psychiatric disease. 

CONCLUSIONS AND OUTLOOK 61

Conditions like age or progressive multiple sclerosis may influence water-referenced absolute metabolite estimates by affecting signal relaxation 

via processes like T2 decay. These effects can be counteracted by measured T2 or voxel composition or using another concentration reference.
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