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1  Central question: How do we create neuroscientific knowledge? 

 Learning a lot in this class, textbooks, and published papers about the brain. But what percent 
of  it is likely to stand the test of  time and be useful?  

 What does it mean when knowledge is “useful” within the context of  neuroscience?  

 In order to determine the answer to this question, we need to understand how is it that we 
create knowledge in the neurosciences, the knowledge that is published in papers, textbooks, and 
ultimately lectures like the ones you experienced in this class.  

 The natural sciences are different from other fields of  inquiry because they are based not 
just on subjective observation of  nature but actually pragmatically testing predictions about 
it  

 Definitions of  empiricism, logical positivism 

 Empiricism: From Greek empeiria (experience). The idea that all rationally acceptable 
beliefs or propositions are justifiable or knowable only through experience (Fumerton, 
2015)  

 Logical positivism: Philosophical movement (also called logical empiricism) started 
by the “Vienna Circle” (1924-1936) that held that the only meaningful problems in 
philosophy are those that can be solved by logical analysis, including, when applicable, 
empirical verification (Creath, 2011; Oxford) 

 Based loosely on this foundation, one might then argue that knowledge that is “useful” in 
neuroscience:  

 Enables accurate predictions about the natural world  

 Enables the development of  effective therapies and technologies for enhancing the 
human condition  

 How does animal research fit into this paradigm?  

 We have no strong evidence that any animal model is perfectly predictive of  a human being 
(Shanks et al., 2009)  

 However it does, we sure use it a lot: British statistics (Home Office Science Group, 2014) 

 This lecture is not a discussion of  ethics; it is, rather, a discussion of  utility. Not asking whether 
animal research is ethical! Asking whether animal research is useful.  

 
2  History of  animal experimentation in neuroscience research 

 1700 B.C.-322 B.C. Heart as seat of  mind (Egyptians, Aristotle): Dissected animals (human 
dissection forbidden). Distinction between mind and physical manifestation of  life (e.g., motion), 
as Hippocratic doctors were reportedly aware of  motor consequences of  head injuries (Taylor 
and Gross, 2003).  

 130-200 A.D. Mechanism of  fluid energies (Galen): Examined non-human animal bodies 
(monkeys, apes, pigs) to observe functions of  heart, lungs, and nerves (von Staden, 1989) and 
advocated the use of  human cadavers, but whether he carried out own advice is unclear (Boylan, 
2014) 

 16th c. Balloonist theory (Descartes): Describes animal anatomy in writings; advocates direct 
experience of  animal bodies to unveil their nature as machines (Skirry, 2014).  

 18th c. Disproving balloonist theory (Swammerdam): Experiments on nerve-muscle 
preparations from frogs (Cobb, 2002)  

 18th c. Animal electricity (Alexander von Humboldt, Luigi Galvani): More frog experiments 
(Finger et al., 2013) 

 18th c. Phrenology (Franz Joseph Gall, Johann Spurzheim): Pseudoscience. Anecdotal evidence 
collected from observation of  living humans as well as human and animal skulls (Weidman, 



2005) 

 19th c. Doctrine of  specific nerve energies (Muller): Reinvigorated the frog as animal model 
basis for assertion that different sensations are coded under the same modalities (electricity) but 
different nerve properties. (Also later collected hundreds of  marine animals in quest to 
categorize on basis of  anatomy) (Otis, 2007)  

 19th c. Increased focus on neuron (Jan Evangelista Purkinje): Purkinje Effect, Purkinje cells, 
Purkinje fibers. Directly observed animal tissues and cells; emphasized importance of  
experimentation in physiology education; set up world’s first physiology laboratory at Breslau 
(Hykes, 1936). 

 19th c. Aggregate field theory (Flourens): Functional audiology experiments in pigeons; 
developed theory of  brain function via many lesion studies in pigs and pigeons (Yildirim and 
Sarikcioglu, 2007).   

 19-20th c. Localization theory (Pierre Paul Broca, Carl Wernicke, Gustav Fritsch, Hitzig, Brodmann): 
Broca and Wernicke most noted for their lesion studies in humans. Meanwhile, Fritsch and 
Hitzig were strapping craniectomized dogs to tables and stimulating (without anesthesia) select 
regions of  the cortex to produce movement, showing that it was a functional organ of  the brain 
and not simply “rind” as had been believed for scholars over hundreds of  years, as well as that it 
might be topographically mapped into localized specializations. Built upon previous work with 
rabbits and human heads as well as observations of  patients (Gross, 2007).  

 Franz Nissl (1860-1919): Experimented on dogs and moles to develop extranuclear staining 
techniques (RNA or DNA) (DeFelipe, 2011) 

 20th c. Topographic organization theory (Hughlings Jackson): Clinical observation; no animal 
experiments (Balcells, 1999; Franz and Gillett, 2011).  

 20th c. Neuron doctrine (Golgi, Cahal): Cahal used over 2,000 animals of  several dozen 
invertebrate and vertebrate species to prepare his staining slides using Golgi’s method (Lopez et 
al., 2010); shared Nobel Prize in physiology for first time in 1906 (De Carlos and Borrell, 2007).  

 20th c. Holism versus localization (Lashley v. Penfield): Lashley lesion experiments in rats (no 
one seat of  memory function) (Beach, 1961); Penfield mostly clinical experience   

 20-21st c. Connectionism (modern consensus): [statistic on number of  animals used per year in 
United States alone]  

We still lack a unified theory of  the brain 
 
3   Why is it that can we use other animals to understand ourselves?  
Surprising similarities among our nervous systems and those of  other organisms 

 Genetic 

 Various ways of  classifying genetic similarity (ex. Mus musculus), but we tend to share a high 
percentage of  important regions with other organisms  

 Can line chromosomes end-to-end to compare sequence divergence in all base pairs.  

 Bonobo autosomal sequences ~98.7% (Prufer et al., 2012) ; genome-wide 
chimpanzee nucleotide divergence 1.23% (CSAC, 2005)  

 For example, 69.1% of  the mouse genome has been shown to be identical to 
human base-pair sequences (MGSC, 2002).  

 But the grand majority of  DNA is in non-protein-coding sequences (35.2% 
introns plus 62.6% inter-genic DNA in humans; Taft et al., 2007) 

 Can also compare base pairs of  protein-coding genes segments only: 85% sequence 
identity between human and mouse (MGSC, 2002). 

 Or can compare genes on basis of  appearance from common ancestor (orthology): 
mouse 80% of  genes orthologous to human (MGSC, 2002); rat 90% of  genes 
orthologous to human (RGSPC, 2004); 70% of  human genes have orthologue in 
zebrafish (Howe et al., 2013) 

 Or can compare orthology of  a subset of  genes. Human genes 15% orthology to 
Drosophila (Shih et al., 2015); disease protein genes: 77% visibly related to Drosophila 
(Reiter et al., 2001) 

 Proteins 



 Almost all major human neurotransmitter receptors have analogues in mice (116/141) and 
rats spanning most known neurotransmitter receptor classes (121/141):  
Adenosine 
Adrenergic 
Cholinergic (muscarinic, nicotonic)  
Dopamine 
GABA (A, B) 
Glutamate (metabotropic, ionotropic) 
Glycine 
Histamine 
Opioid 
Purinergic 
5HT (metabotropic, ionotropic) 
Peptides (bombesin, galanin, somatostatin, cholecystekinin, neuropeptide Y, VIP, 
neurotensin, TRH, GRH,  gastrin releasing peptide,  GHRH, CRH, angiotensin, 
calcitonin, bradykinin, secretin,  tachykinin, neuromedin U, glucagon) (Iwama and 
Gojobori, 2002)  

 One mass spectrometry paper showed 70% agreement in postsynaptic density protein types 

 Many differences were in non-functional protein groups (Bayes et al., 2012) 

 Muscarinic and nicotinic acetylcholine receptors as well as AChE in Paramecium primaurelia 
(Roschina, 2010) 

 Neurotransmitters 

 Catecholamines (dopamine, epinephrine, norepinephrine), serotonin, histamine are used as 
signal molecules in a variety of  creatures from single-celled organisms to plants and fungus 
to non-human animals (Roschina, 2010) 

 For example, catecholamines can promote growth in E. Coli that is blocked by 
adrenergic and dopaminergic receptor antagonists (Roschina, 2010) 

 Acetylcholine has been shown to regulate stomata function in some plants (Vicia faba and 
Pisum savitum); moreover, research has shown that dopamine concentrations in some plants 
may increase with stress conditions (acid treatment, drought, UV light) (Swiedrych et al., 
2004). For these similarities, plant systems (germination, autofluoresence in unicellular 
microspores) have been proposed as viable models of  drug testing as biosensors of  
neurotransmission modulation. (Roschina, 2010)  

 Circuits:  

 Generally speaking, many cortical regions have gross analogues in other mammalian and 
even non-mammalian species (Buckner and Krienan, 2013) 

 
4  But how different are we, really? Important caveats in generalizing from animal data   

 Genetic 

 Small mutations can give rise to big effects 

 Point mutations in gene for cyclin D2 protein that prevents its regulatory glycogen 
synthase kinase 3beta phosophorylation manifests as a whole syndrome of  
megacephaly and polydactyly (Mirzaa et al., 2014)  

 Same gene in different epigenetic situations can react completely differently 

 For example, seizure-causing mutations in P/Q-type calcium channelopathy Cacna1a 
potassium channel protein almost completely rescued by knocking out Kcna1 gene for 
potassium channel (Glasscock et al., 2007)  

 Proteins 

 Subtle differences in the structure of  a single protein can have drastic consequences for 
phenotype.  

 “A recent study suggests that in the rhodopsin family of  G protein coupled receptors 
(GPCR), which includes most of  the pharmaceutically interesting targets, only about 58% 
of  the rat genes have an orthologue with human genes” (Gloriam et al., 2007) 

 Binding affinities can vary widely between rodent and human. Examples: D1, D4, 5HT-2A, 



5-HT7, muscarinic M4. Among 45 drugs tested, D1 receptor affinities varied an average of  
7 times between rats and humans (Geerts, 2009)   

 Mutations widespread among orthologous proteins between humans and rodents 

 85% sequence identity between human and mouse (MGSC, 2002) still corresponds to 
several million base pair differences  

 Neurotransmitter receptor distributions different between humans and other animals. For 
example, GABA-A epsilon subunit found in CA3 and locus ceruleus of  primates but not 
rodents, and GABA-A theta subunit is found in cerebral cortex and hippocampus of  
primates but not rats (Iwama and Gojobori, 2002). Table from (Geerts, 2009)  

 Among 30% of  proteins found to be differentially enriched in human and mouse PSD, 
mice had more ion channels and translation enzymes and humans had more cytoskeletal 
components, enzymes like reductase, transferase, and dehydrogenase, and kinases (Bayes et 
al., 2012) 

 Despite similar protein structures, expression patterns can differ widely across species, such 
as genes expressed in the cortices of  humans and chimpanzees (Oldham et al., 2006) 

 General conservation of  neurotransmitter receptor classes, but important differences in 
particular receptors. For example, human lacks functional 5HT-5B receptor found in 
rodents (Grailhe et al., 2001)  

 Neurotransmitters 

 TH interneurons abundant in human cortical layers V-VI but absent in great apes (chimp, 
gorilla, bonobo, orangutan) and found mostly in layers II-III in rat (DeFelipe, 2011) 

 Neuronal morphology and circuitry 

 Despite regional analogues relative size and circuitry can differ greatly. Human versus 
chimpanzee (Carroll, 2003); human versus macaque (Patel and Iverson, 2014) 

 Studies since have found that cortical neural density decreases with increasing brain size 
across species, varying up to 3-fold across even primates (Herculano-Houzel et al., 2008)  

 Mouse versus human cortex  

 Cortex of  mice is about half  as thick (2622 microm to 1210 microm) 

 Has more than twice as many neurons (158 to 364) (DeFelipe, 2011) 

 Generally fewer synapses per cortical neuron (DeFelipe, 2011) 

 Human dendritic spines are 100% more voluminous and about 30% longer than those 
in mice  (DeFelipe, 2011) 

 Different layers are not as distinct (Jones, 2009)  

 25-30% of  cortical neurons are (mostly GABAergic) interneurons in primates versus 
15-20% in mouse (Jones, 2009)  

 Double bouquet GABAergic interneurons do not appear to exist in rodents 
(DeFelipe, 2011). 

 Rockel et al., 1980 found that numbers of  laminar neurons across cortex (except visual 
cortex) was conserved across mouse, rat, cat, monkey, and human, though replication has 
been spotty (Rakic, 2008). Still an important debate.  

 
5   Examples of  animal experiment successes in neurobiology research  
Note: Examples are from neurobiology research only. Great strides in other fields like oncology and 
endocrinology have been made on the backs of  many animals as well.  

 1 All but one Nobel prize in physiology or medicine related directly to neural function or 
behavior depended on animal experimentation (chart) 

 2 Caenorhabtidis elegans: Complete wiring diagram of  302 neurons has been anatomically 
mapped and the sensory-motor circuit responsible for swimming well characterized (Sengupta 
and Samuel, 2009); hundreds of  genes responsible for axon regrowth have been identified 
following neural lesioning (Chen et al., 2011)  

 3 Drosophila melanogaster: Several genes later implicated in key signaling pathways of  neural 
development (notch, hedgehog, achate, wingless, decapentaplegic/tumor growth factor-beta, roundabout, 
semaphorins), circadian rhythm (period, timeless, and clock), multi-responsive ion channels (trp), 
potassium channels (shaker, eag) were initially discovered upon their mutation in the fruit fly, 



leading to discovery of  at least two diseases: 

 Cerebral autosomal dominant ateriopathy with subcortical infarcts and 
leukoencephalography/CADASIL (mutations in Notch gene)  

 Familial advanced sleep phase syndrome (mutations in two Clock genes) 
Functions of  several proteins have also been examined in vivo. Advantages include ease of  
altering many genes at once, inserting single copies of  desired DNA sequence into genome, and 
knocking out specific genes in designated area (Bellen et al., 2010). Example is of  
holoprosencephaly following knockout of  a hedgehog gene (Motoyama, 2006).   

 3 Mouse: Discovery of  anti-orexogenic leptin starting with chance mutation of  ob/ob mouse (Ingalls et 
al., 1950) followed by cloning of  protein product (leptin) in 1994 (Li, 2011) and development of  drug 
Metreleptin for lipodystrophy patients (Nainggolan, 2014) (started out as victory for neuroscience that 
spilled into endocrinology) 

 4 Rat: Place cell discovery in CA1 by John O’Keefe and grid cell discovery in medial entorhinal 
hippocampus by May-Britt and Edward Moser weighed in on a long-running debate to show 
that cognition could not be boiled down to simple sensorimotor function (Kiehn and Forssberg, 
2014)  

 5 Lagomorphs: Tissue plasminogen activator stroke treatment discovered in 1990 following 
tests on rabbits (Bednar et al., 1990)  

 6 Non-human primates: More than 1/3 of  the citations used by the paper reporting ten-
degree brain-controlled motion in upper limb prosthesis in a human quadriplegic for the first 
time were based on data in non-human primates (Wodlinger et al., 2015).  

 
6   Examples of  animal experiment failures in neurobiology research 

 “Currently, nine out of  ten experimental drugs fail in clinical studies because we cannot 
accurately predict how they will behave in people based on laboratory and animal studies.” –
Mike Leavitt, U.S. Secretary of  Health and Human Services, 2007 (Shanks et al., 2009)  

 Mice and Alzheimer’s: Not a single treatment has been yielded of  over 200 that have passed 
preclinical trials for amelioration of  cognitive deficit in APP mice (Zahs and Ashe, 2010)   

 Mutations in APP and presenilins (part of  gamma-secretase complex) cause memory loss, 
plaques, neurofibrillary tauopathy, and neuronal death, but mice develop only plaques and 
memory loss but not tauopathy or neuronal loss (Zahs and Azhe, 2010)  

 Humans have several APOE proteins, of  which variants in APOE4 are shown to increase 
Alzheimer’s risk; mice have only one, which behaves like human APOE3 (Geers, 2009).  

 In humans and transgenic mice with mutant human tau, amyloid-beta pathology has been 
shown to induce tauopathy, a finding that we have been unable to replicate in transgenic 
mice with wild-type human tau (Zahs and Azhe, 2010) 

 Preclinical models of  stroke: 500 pharmaceuticals have passed preclinical trials in animals and 
yet we have only two therapies deemed effective enough for the clinic (van der Worp et al., 
2010): aspirin and early intravenous thrombolysis with tissue plasminogen activator 

 Animal models of  TBI: Thirty years of  promising pre-clinical trials have been unable to 
produce a single neuroprotective drug that has passed clinical trials in TBI patients (Xiong et al., 
2013) 

 
Tentative conclusion: “Animal models are sometimes able to identify possible and innovative 
mechanisms, such as metabotropic glutamate receptor 2 agonism as a possible treatment for 
schizophrenia; however, they are much less useful for the actual drug discovery process” (Geerts, 2009)  
 
7   What if  animal experimentation were outlawed tomorrow? Alternatives 

A. In vitro  
i. In vitro blood-brain barrier for drug discovery (Wong et al., 2013) 
ii. 3D in vitro neural model of  Alzheimer’s (Choi et al., 2014) 

B. In silico  
i. Blue Brain project, a European collaboration centered at the L’Ecole Polytechnique 

Federale de Lausanne that aims to simulate a rat and then human brain, has already 
produced 65 publications in electrical signal processing, cortical organization, neural 



communication, and processing efficiency (The Blue Brain Project, 2015).     
C. Human research  

i. Behavioral studies 
ii. Clinical trials 
iii. Patient case studies: A search of  “patient H.M.” brings more than 250 papers in 

PubMed. His damage, restricted to medial temporal lobe, as well as constellation of  
symptoms, taught the field four main principles: Medial temporal lobe structures are 
not necessary for: 
1. motor skills (learned motor skills);  
2. attention or working memory (had normal working memory),  
3. perception or intellect (above-average I.Q.),  
4. long-term memory storage (memories for events before surgery intact). (Squire 

and Wixted, 2011)  
iv. Epidemiological studies: Framingham heart study milestones in (Framingham Heart 

Study, 2015)  
 
8   Animal testing without compromising basic ethical standards: Current consensus  

 A hundred years ago, no regulation of  animal testing. Tested on animals trapped in wild 
(Humboldt), pets (Fritsch and Hitzig)  

 IACUC and Three R’s 

 Replacement (When you can use methods other than animal testing to explore the same 
hypothesis, do it) 

 Refinement (When a design using fewer animals can explore the same hypothesis, do it) 

 Reduction (When you can take measures to alleviate pain and stress in your animal subjects, 
do it)  

(Pankevich et al., 2012)  

 Choosing the right tool for the job 

 Nerve conduction studies using voltage clamping of  squid giant axon 

 Genetic basis of  vocal learning using zebra finch  

 Only cetaceans, birds, and bats have shown evidence of  vocal learning. Chimpanzees 
are “more related” to us but would not be a good model organism for this research. 
(Brainard and Doupe, 2002)  

 Dynamic learning of  song sequences: Birds raised in isolation will produce abnormal 
songs, but those raised with unrelated tutors will develop songs similar to those of  the 
tutor. (Brainard and Doupe, 2002) 

 100% sequence identity with humans in DNA-binding region of  transciption factor 
FoxP2 (forkhead box P2!) (White et al., 2006)  

 Choosing test conditions with the most translational validity  

 MWM: Single biggest predictor of  performance has been found to be retinal atrophy, not 
memory; also considered to be ethologically irrelevant for mice (Garner, 2014) 

 Barbering in mice used as model for OCD when barbering in humans is an entirely 
different disorder (trichotillomania) and exclusionary for OCD (Garner, 2014)  

 Biomarkers over behavioral phenotyping (Garner, 2014)  

 Strong knowledge of  ethology and species-specific physiology necessary for correct 
interpretation of  experimental results  
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